Loss of DNA Polymerase Z Causes Chromosomal Instability in Mammalian Cells

نویسندگان

  • John P. Wittschieben
  • Shalini C. Reshmi
  • Susanne M. Gollin
  • Richard D. Wood
چکیده

Rev3L encodes the catalytic subunit of DNA polymerase Z (pol Z) in mammalian cells. In yeast, pol Z helps cells bypass sites of DNA damage that can block replication enzymes. Targeted disruption of the mouse Rev3L gene causes lethality midway through embryonic gestation, and Rev3L / mouse embryonic fibroblasts (MEFs) remain in a quiescent state in culture. This suggests that pol Z may be necessary for tolerance of endogenous DNA damage during normal cell growth. We report the generation of mitotically active Rev3L / MEFs on a p53 / genetic background. Rev3L null MEFs exhibited striking chromosomal instability, with a large increase in translocation frequency. Many complex genetic aberrations were found only in Rev3L null cells. Rev3L null cells had increased chromosome numbers, most commonly near pentaploid, and double minute chromosomes were frequently found. This chromosomal instability associated with loss of a DNA polymerase activity in mammalian cells is similar to the instability associated with loss of homologous recombination capacity. Rev3L null MEFs were also moderately sensitive to mitomycin C, methyl methanesulfonate, and UV and ;-radiation, indicating that mammalian pol Z helps cells tolerate diverse types of DNA damage. The increased occurrence of chromosomal translocations in Rev3L / MEFs suggests that loss of Rev3L expression could contribute to genome instability during neoplastic transformation and progression. (Cancer Res 2006; 66(1): 134-42)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells.

Rev3L encodes the catalytic subunit of DNA polymerase zeta (pol zeta) in mammalian cells. In yeast, pol zeta helps cells bypass sites of DNA damage that can block replication enzymes. Targeted disruption of the mouse Rev3L gene causes lethality midway through embryonic gestation, and Rev3L-/- mouse embryonic fibroblasts (MEFs) remain in a quiescent state in culture. This suggests that pol zeta ...

متن کامل

Z-DNA-forming sequences generate large-scale deletions in mammalian cells.

Spontaneous chromosomal breakages frequently occur at genomic hot spots in the absence of DNA damage and can result in translocation-related human disease. Chromosomal breakpoints are often mapped near purine-pyrimidine Z-DNA-forming sequences in human tumors. However, it is not known whether Z-DNA plays a role in the generation of these chromosomal breakages. Here, we show that Z-DNA-forming s...

متن کامل

I-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility

Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...

متن کامل

Telomere Instability Induced by Anticancer Drugs in Mammalian Cells

Telomere instability results from chromosome end loss (due to chromosome breakage at one or both ends) or, more frequently, telomere dysfunction. Dysfunctional telomeres arise when they lose their end-capping function or become critically short, which causes chromosomal termini to behave like a DNA double-strand break. At the chromosomal level, this phenomenon is visualized by using Fluorescenc...

متن کامل

Inhibitory effect of a short Z-DNA forming sequence on transcription elongation by T7 RNA polymerase

DNA sequences capable of forming unusual secondary structures can be a source of genomic instability. In some cases that instability might be affected by transcription, as recently shown for the Z-DNA forming sequence (CG)(14), which causes genomic instability both in mammalian cells and in bacteria, and this effect increases with its transcription. We have investigated the effect of this (CG)(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005